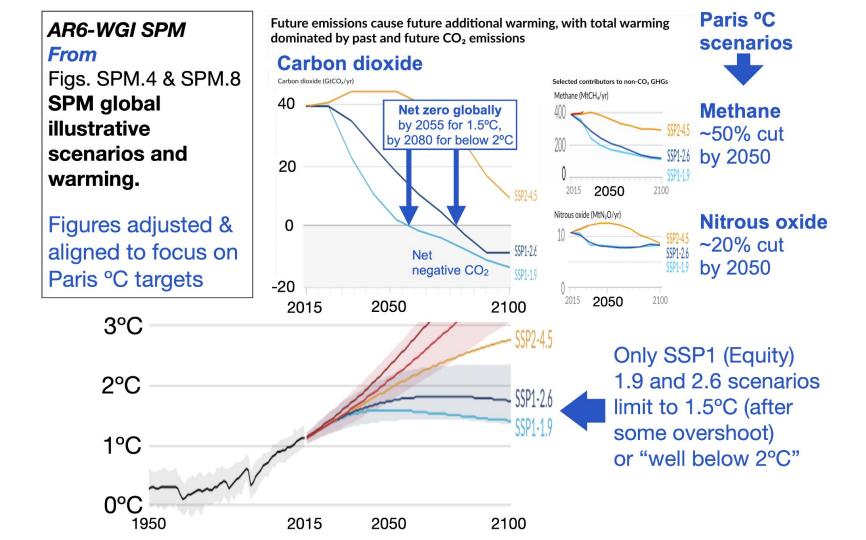


IPCC AR6-WGI addendum to literature review


an update to the April 2021 carbon budgeting literature review

Paul Price Dublin City University <u>paul.price@dcu.ie</u> CCAC fellow DCU supervisors: Prof. Barry McMullin and Dr. Aideen O Dochartaigh

- 1. Carbon budgeting in climate action "consistent" with Paris goals
- 2. National carbon budgeting and the 2023 Global Stocktake
- GHG emissions metrics and CDR
- 4. Methane (biogenic vs. fossil) in carbon budgeting

In these slides:

- Black font = reporting of AR6-WGI assessment.
- Coloured font = updates & commentary

1. Carbon budgeting for Paris "consistent" climate action

- AR6-WGI: much greater certainty in climate sensitivity and global carbon budgets.
- For Paris temperature limits need net zero CO₂ emissions globally soon after
 2050, in parallel with deep cuts in anthropogenic emissions of other GHGs.
- Greater emphasis on methane ⇒ "strong, rapid and sustained reductions".
- **Update to lit. review:** Ireland's multi-gas, national cumulative GHG quota (GWP*, 2015 basis) consistent with Paris goals, <u>from 2021</u> onward, ranges tightened to:
 - 1.5°C low overshoot: 90–130 MtCO₂we [CO₂+N₂O+CH₄]
 - Well below 2°C: 260–400 MtCO₂we [CO₂+N₂O+CH₄]
- Ireland will imminently overshoot these quotas.
- Only early, deep and sustained reductions in all GHGs, including CH₄, can limit Ireland's Paris-quota overshoot & limit tacit commitment to more CDR.

CO₂-only carbon budgets are given in Table SPM.2.

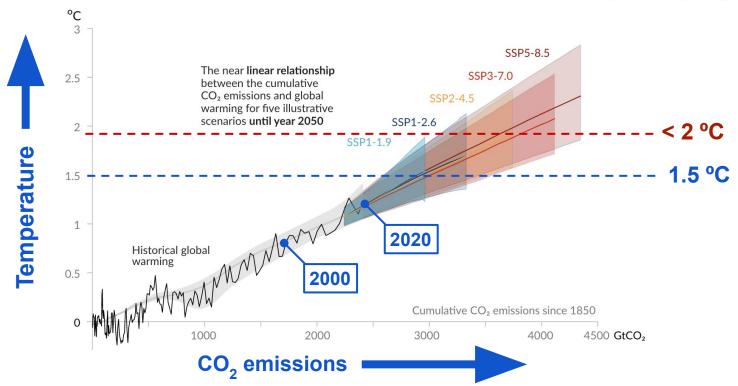
Warming level at peak CO₂ also strongly depends on non-CO₂ especially CH₄

AR6-WGI Table SPM.2: Estimates of historical CO₂ emissions and remaining carbon budgets.

Global warming between 1850–1900 and 2010–2019 (°C)	Historical cumulative CO ₂ emissions from 1850 to 2019 (GtCO ₂)
1.07 (0.8–1.3; <i>likely</i> range)	2390 (± 240; <i>likely</i> range)

Approximate global warming relative to 1850–1900 until temperature	Additional global warming relative to 2010–2019 until temperature	fron	n the begi	naining canning of 2 dimiting gaseerature li	Variations in reductions in non-CO ₂ emissions*(3)		
$\lim_{\to} (^{\circ}C)^*(1)$	limit (°C)	17%	33%	50%	67%	83%	
1.5	0.43	900	650	500	400	300	Higher or lower reductions in
1.7	0.63	1450	1050	850	700	550	accompanying non-CO ₂ emissions can increase or decrease the values on
2.0	0.93	2300	1700	1350	1150	900	the left by 220 GtCO ₂ or more

2. National carbon budgeting to 2030 and 2023 global stocktake


- AR6-WGI does not give specific guidelines for national carbon budgeting as this is subject to value judgements by decision makers. Quantify "fair share"?
- **2023 Global Stocktake:** In Cross-Chapter Box 1.1. AR6-WGI details material relevant to the Stocktake and quotes Paris Agreement on nations' responsibilities:
 - 'comprehensive and facilitative manner... and in the light of equity and the best available science' ... 'countries to report emissions of individual greenhouse gases separately for the global stocktake'.
- By-gas reporting enables use of GWP* or CGTP for Paris °C policy analysis.
 - So need to show by-gas paths for overall 5-yr national and sectoral budgeting.
 - To assess Paris "consistent" budgeting need GWP* or CGTP, or climate model.
- BUT Climate Act for 51% reduction by 2030 is on GWP₁₀₀ basis (as per CCAC).
 Such a 51% reduction cannot be applied to GWP* values.

AR6-WGI Figure SPM.10:

Near-linear relationship between cumulative CO2 emissions and the increase in global surface temperature.

Every tonne of CO₂ emissions adds to global warming

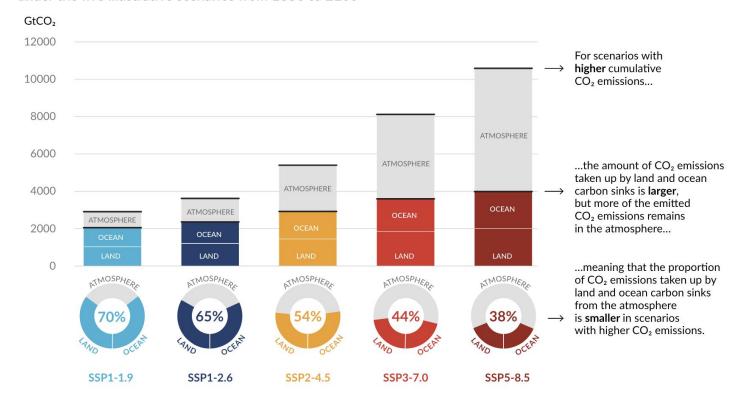
Global surface temperature increase since 1850-1900 (°C) as a function of cumulative CO₂ emissions (GtCO₂)

3. Carbon budgeting: GHG metrics & Carbon Dioxide Removal

GHG emissions metrics:

- AR6-WGI [Box 7.3] guides emission metric choices, BUT the "report does not recommend an emission metric because the...choice depends on the purposes."
- AR6-WGI finds "step-pulse" metrics like GWP* & CGTP <u>can</u> assess warming in multi-gas carbon budgeting including methane, in a defined equity context.
 GWP₁₀₀ <u>cannot</u> assess warming in high CH₄ budgets relative to Paris "consistent".

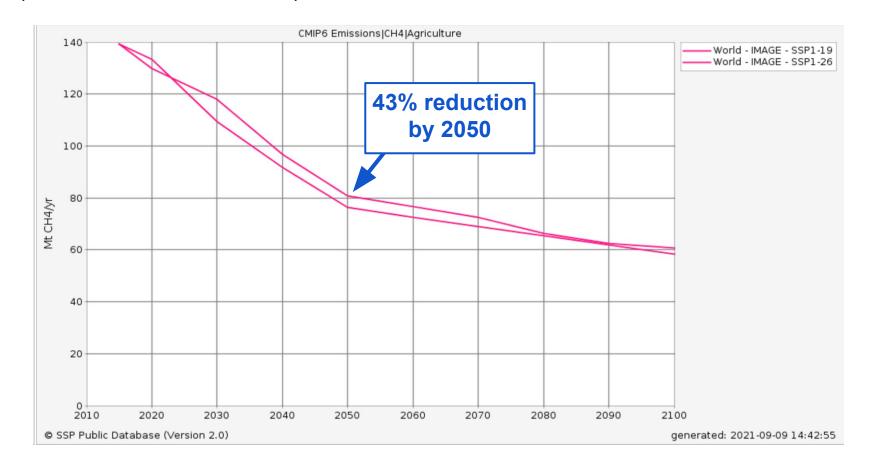
Carbon Dioxide Removal (CDR):


- CO₂ removal (CDR) warming reduction has an effect ~10% smaller than the warming from the same quantity of fossil CO₂ emissions.
- SPM: "Potential negative and positive effects of CDR for biodiversity, water and food production are methods-specific" more on this in WGII and WGIII reports.
- Globally, higher total future CO₂ emitted = less CO₂ taken up in natural sinks.

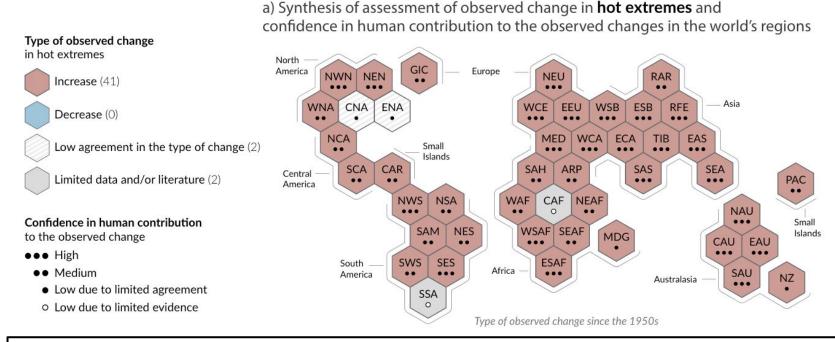
AR6-WGI Fig.SPM.7:

Globally, higher total future CO, emissions results in less CO₂ taken up in natural sinks. and more warming per tonne of CO, emitted.

The proportion of CO₂ emissions taken up by land and ocean carbon sinks is smaller in scenarios with higher cumulative CO₂ emissions


Total cumulative CO₂ emissions taken up by land and oceans (colours) and remaining in the atmosphere (grey) under the five illustrative scenarios from 1850 to 2100

4. Anthropogenic methane (biogenic vs. fossil) in carbon budgeting


- AR6-WGI SPM makes no distinction between anthropogenic methane sources
 the word "biogenic" is not mentioned.
- **Technical Summary:** "[m]ethane from fossil fuel sources has slightly higher emission metric values than those from biogenic sources".
- **Table 7.15:** adjusted GWP₁₀₀ value of 27.2 is given for biogenic methane and 29.8 for fossil methane. This minor difference is outweighed by total metric uncertainty
- Given GWP₁₀₀ values are $CH_4 = 28$ $N_2O = 273$ AR6 values include feedbacks.
- **Summary:** AR6-WGl does not evidence any substantive 'd*istinct* characteristics of biogenic methane' relative to fossil methane that would make a meaningful difference to Ireland's carbon budgeting decision-making.

Agricultural methane in the global illustrative scenarios meeting Paris goals (chart from <u>SSP database</u>)

Increases in **Hot Extremes** are worldwide, rising with total emissions

Climate change is already affecting every inhabited region across the globe with human influence contributing to many observed changes in weather and climate extremes

AR6-WGI Figure SPM.3a: Synthesis of assessed observed and attributable regional changes